Bài giảng Toán 11 - Bài 3: Đạo hàm của hàm số lượng giác
Bạn đang xem tài liệu "Bài giảng Toán 11 - Bài 3: Đạo hàm của hàm số lượng giác", để tải tài liệu gốc về máy hãy click vào nút Download ở trên.
Tóm tắt nội dung tài liệu: Bài giảng Toán 11 - Bài 3: Đạo hàm của hàm số lượng giác

CHƯƠNG V. ĐẠO HÀM Đ3ĐẠO HÀM CỦA HÀM SỐ LƯỢNG GIÁC sin x 1. Giới hạn của x 2. Đạo hàm của hàm số y = sinx. 3. Đạo hàm của hàm số y = cosx. 4. Đạo hàm của hàm số y = tanx. 5. Đạo hàm của hàm số y = cotx. BÀI 3. ĐẠO HÀM CỦA HÀM SỐ LƯỢNG GIÁC sin x 1. Giới hạn của - Chỳ ý: ▪ Định lý 1: x ùỡ u( x )ạạ 0, x x sin x ù 0 sinux ( ) lim= 1 ớ ị=lim 1 x→0 x ù limux ( )= 0 xxđ 0 ux() ợù xxđ 0 Vớ dụ 1: Tớnh cỏc giới hạn tan5x sin4x b. lim a. lim x0→ x0→ x x Bài toỏn: Sử dụng định nghĩa, tỡm đạo hàm của hàm số y = sinx ? 9:47:48 AM BÀI 3. ĐẠO HÀM CỦA HÀM SỐ LƯỢNG GIÁC 1. Giới hạn của sin x ▪ Định lý 1: x 3. Đạo hàm của hàm số y = cosx sin x - Định lý 3: Hàm số yx = cos cú đạo hàm tại 2.lim Đạo hàm của= 1 mọi x và x→0 x hàm số y = sin x (cosxx )'=− sin ▪ Định lý 2: - Chỳ ý: Nếu yu = cos và u = u () x thỡ (sinxx )'= cos (cosu )'=− u '.sin u (sinu )'= u '.cos u - Vớ dụ 3: Tớnh đạo hàm của cỏc hàm số sau 3. Đạo hàm của hàm số a. y=− cos( x2 1) ; y = cos x ▪ Định lý 3: b. y=− 2sin x 3cos x ; (cosxx )'=− sin sin x cy..= (cos9:47:48u )' AM=− u '.sin u cos x HƯỚNG DẪN VỀ NHÀ ❖ Xem lại bài đó học và đọc trước phần 3, 4: Đạo hàm của hàm số y = tanx và y = cotx ❖ Bài tập về nhà: BT3 a,b,d,f; BT6; BT7 trang 169 SGK CÂU HỎI TRẮC NGHIỆM Cõu 1: Đạo hàm của hàm số y = cos3 là: A. y '= sin 3 B . y ' = − sin 3 C. y '= 0 D . y ' = − cos3 Cõu 2: Đạo hàm của hàm số yx = 2sin là: 1 cos x A.'.' y== B y 2 2sinxx 2sin 1 cos x C.'.' y== D y 2sinxx 2 2sin Cõu 3: Đạo hàm của hàm số: yx = cos 2 là: A. y '= − sin 2 x B . y ' = sin 2 x C. y '= 2cos x D . y ' = − 2cos x
File đính kèm:
bai_giang_toan_11_bai_3_dao_ham_cua_ham_so_luong_giac.ppt